Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomedical and Environmental Sciences ; (12): 139-151, 2021.
Article in English | WPRIM | ID: wpr-878331

ABSTRACT

Objective@#The underlying mechanism of Ezrin in ovarian cancer (OVCA) is far from being understood. Therefore, this study aimed to assess the role of Ezrin in OVCA cells (SKOV3 and CaOV3) and investigate the associated molecular mechanisms.@*Methods@#We performed Western blotting, reverse transcription-quantitative polymerase chain reaction, MTT, cell colony, cell wound healing, transwell migration and invasion, RhoA and Rac active pull down assays, and confocal immunofluorescence experiments to evaluate the functions and molecular mechanisms of Ezrin overexpression or knockdown in the proliferation and metastasis of OVCA cells.@*Results@#The ectopic expression of Ezrin significantly increased cell proliferation, invasiveness, and epithelial-mesenchymal transition (EMT) in OVCA cells. By contrast, the knockdown of endogenous Ezrin prevented OVCA cell proliferation, invasiveness, and EMT. Lastly, we observed that Ezrin can positively regulate the active forms of RhoA rather than Rac-1 in OVCA cells, thereby promoting robust stress fiber formation.@*Conclusion@#Our results indicated that Ezrin regulates OVCA cell proliferation and invasiveness by modulating EMT and induces actin stress fiber formation by regulating Rho-GTPase activity, which provides novel insights into the treatment of the OVCA.


Subject(s)
Female , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cytoskeletal Proteins/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Ovarian Neoplasms/pathology , Stress Fibers/metabolism , rhoA GTP-Binding Protein/metabolism
2.
Braz. j. med. biol. res ; 53(7): e9207, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132533

ABSTRACT

The objective of this study was to investigate the relationship between PI3K/mTOR/RhoA signaling regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. RAW264.7 macrophages were divided into four groups; blank control, negative control, PI3K-RNAi, and mTOR-RNAi. The cytoskeletal changes in the macrophages were observed. Furthermore, the phagocytic capacity of macrophages against Escherichia coli is reported as mean fluorescence intensity (MFI) and percent phagocytosis. Transfection yielded 82.1 and 81.5% gene-silencing efficiencies against PI3K and mTOR, respectively. The PI3K-RNAi group had lower mRNA and protein expression levels of PI3K, mTOR, and RhoA than the blank and negative control groups (Р<0.01). The mTOR-RNAi group had lower mRNA and protein levels of mTOR and RhoA than the blank and the negative control groups (Р<0.01). Macrophages in the PI3K-RNAi group exhibited stiff and inflexible morphology with short, disorganized filopodia and reduced number of stress fibers. Macrophages in the mTOR-RNAi group displayed pronounced cellular deformations with long, dense filopodia and an increased number of stress fibers. The PI3K-RNAi group exhibited lower MFI and percent phagocytosis than blank and negative control groups, whereas the mTOR-RNAi group displayed higher MFI and percent phagocytosis than the blank and negative controls (Р<0.01). Before and after transfection, the mRNA and protein levels of PI3K were both positively correlated with mTOR and RhoA (Р<0.05), but the mRNA and protein levels of mTOR were negatively correlated with those of RhoA (Р<0.05). Changes in the phagocytic capacity of macrophages were associated with cytoskeletal rearrangements and were regulated by the PI3K/mTOR/RhoA signaling pathway.


Subject(s)
Humans , Animals , Rats , Phagocytosis/physiology , Cytoskeleton/metabolism , Phosphatidylinositol 3-Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Transfection , Signal Transduction , Blotting, Western , Gene Silencing , RNA Interference , Real-Time Polymerase Chain Reaction , RAW 264.7 Cells , Genetic Vectors
3.
Arq. bras. cardiol ; 107(5): 427-436, Nov. 2016. graf
Article in English | LILACS | ID: biblio-827863

ABSTRACT

Abstract Background: The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. Objective: To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Methods: Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Results: Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Conclusion: Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism.


Resumo Fundamento: O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Objetivos: Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase em artérias de resistência e o papel das espécies reativas de oxigênio (ERO) derivadas da NAD(P)H oxidase nessa resposta. Nós também avaliamos se ocorreu translocação da p47phox e ativação da NAD(P)H oxidase após o consumo agudo de etanol. Métodos: Ratos Wistar machos foram tratados com etanol via oral (1g/kg, p.o. gavagem) ou água (controle). Alguns ratos foram tratados com vitamina C (250 mg/kg, p.o. gavagem, 5 dias) antes de água ou etanol. O leito arterial mesentérico (LAM) foi coleado 30 min após a administração de etanol. Resultados: A vitamina C preveniu o aumento da geração de ânion superóxido (O2 -) e lipoperoxidação no LAM induzidos pelo etanol. A atividade da catalase (CAT), da superóxido dismutase (SOD) e os níveis de glutationa reduzida(GSH), nitrato e peróxido de hidrogênio (H2O2) não foram afetados após a ingestão aguda de etanol. A vitamina C e o 4-metilpirazol preveniram o aumento na geração de O2 - induzido pelo etanol em cultura de células do músculo liso vascular (CMLV). O etanol não afetou a fosforilação da proteína quinase B (Akt) e nem da óxido nítrico sintase endotelial (eNOS) (nos resíduos de Ser1177 ou Thr495) ou a reatividade vascular do LAM. A vitamina C preveniu o aumento da razão membrana:citosol da p47phox e a expressão da RhoA no LAM de rato induzido pelo etanol. Conclusão: A ingestão aguda de etanol induz a ativação da via RhoA/Rho quinase por um mecanismo que envolve a geração de ERO. Nas artérias de resistência, o etanol ativa NAD(P)H oxidase induzindo a translocação da p47phox por um mecanismo redox-sensível.


Subject(s)
Animals , Male , Rats , Ascorbic Acid/pharmacology , Oxidative Stress/drug effects , NADPH Oxidases/metabolism , rhoA GTP-Binding Protein/metabolism , Ethanol/administration & dosage , Antioxidants/pharmacology , Ascorbic Acid/metabolism , Rats, Wistar , NADPH Oxidases/drug effects , Protein Transport , Disease Models, Animal , Enzyme Activation
4.
Experimental & Molecular Medicine ; : e125-2014.
Article in English | WPRIM | ID: wpr-113786

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive lysophospholipid involved in numerous physiological responses. However, the expression of LPA receptors and the role of the Hippo signaling pathway in epithelial cells have remained elusive. In this experiment, we studied the functional expression of LPA receptors and the associated signaling pathway using reverse transcriptase-PCR, microspectrofluorimetry, western blotting and immunocytochemistry in salivary gland epithelial cells. We found that LPA receptors are functionally expressed and involved in activating the Hippo pathway mediated by YAP/TAZ through Lats/Mob1 and RhoA/ROCK. Upregulation of YAP/TAZ-dependent target genes, including CTGF, ANKRD1 and CYR61, has also been observed in LPA-treated cells. In addition, based on data suggesting that tumor necrosis factor (TNF)-alpha induces cell apoptosis, LPA upregulates TNF-induced caspase-3 and cleaved Poly(ADP-ribose)polymerase (PARP). However, small interfering RNA treatment to Yes-associated protein (YAP) or transcriptional co-activator with a PDZ-binding motif (TAZ) significantly decreased TNF-alpha- and LPA-induced apoptosis, suggesting that YAP and TAZ modulate the apoptotic pathway in salivary epithelial cells.


Subject(s)
Humans , Adaptor Proteins, Signal Transducing/genetics , Apoptosis , Cell Line , Epithelial Cells/cytology , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/genetics , Lysophospholipids/metabolism , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/genetics , Receptors, Lysophosphatidic Acid/genetics , Salivary Glands/cytology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
5.
Experimental & Molecular Medicine ; : 98-102, 2004.
Article in English | WPRIM | ID: wpr-190967

ABSTRACT

Glutamate induced rapid phosphorylation of moesin, one of ERM family proteins involved in the ligation of membrane to actin cytoskeleton, in rat hippocampal cells (JBC, 277:16576-16584, 2002). However, the identity of glutamate receptor has not been explored. Here we show that a-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is responsible for glutamate-induced RhoA activation and phosphorylation of moesin. Glutamate induced phosphorylation at Thr-558 of moesin was still detectible upon chelation of Ca(2+), suggesting involvement of AMPA receptor instead of N-methyl D-Aspartate (NMDA) receptor in this phosphorylation of moesin. AMPA but not NMDA- induced moesin phosphorylation was independent of Ca(2+). Both AMPA and NMDA but not Kainate induced moesin phosphorylation at similar levels. However, the kinetics of phosphorylation varied greatly between AMPA and NMDA where AMPA treatment rapidly increased phosphomoesin, which reached a maximum at 10 min after treatment and returned to a basal level at 30 min. In contrast, NMDA-induced phosphorylation of moesin reached a maximum at 30 min after treatment and was remained at higher levels at 60 min. A possible involvement of RhoA and its downstream effector, Rho kinase in the AMPA receptor-triggered phosphorylation of moesin was also explored. The kinetics for the glutamate- induced membrane translocation of RhoA was similar to that of moesin phosphorylation induced by AMPA. Moreover, Y-27632, a specific Rho kinase inhibitor, completely blocked AMPA-induced moesin phosphorylation but had no effect on NMDA-induced moesin phosphorylation. These results suggest that glutamate-induced phosphorylation of moesin may be mediated through the AMPA receptor/RhoA/Rho kinase pathway.


Subject(s)
Animals , Rats , Calcium/metabolism , Cell Line , Excitatory Amino Acid Agonists/metabolism , Glutamic Acid/metabolism , Kainic Acid/metabolism , Microfilament Proteins/metabolism , N-Methylaspartate/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , rhoA GTP-Binding Protein/metabolism
6.
Experimental & Molecular Medicine ; : 172-178, 2004.
Article in English | WPRIM | ID: wpr-37851

ABSTRACT

Agents that elevate cellular cAMP are known to inhibit the activation of phospholipase D (PLD). We investigated whether PLD can be phosphorylated by cAMP-dependent protein kinase (PKA) and PKA-mediated phosphorylation affects the interaction between PLD and RhoA, a membrane regulator of PLD. PLD1, but not PLD2 was found to be phosphorylated in vivo by the treatment of dibutyryl cAMP (dbcAMP) and in vitro by PKA. PKA inhibitor (KT5720) abolished the dbcAMP-induced phosphorylation of PLD1, but dibutyryl cGMP (dbcGMP) failed to phosphorylate PLD1. The association between PLD1 and Val14RhoA in an immunoprecipitation assay was abolished by both dbcAMP and dbcGMP. Moreover, RhoA but not PLD1 was dissociated from the membrane to the cytosolic fraction in dbcAMP-treated cells. These results suggest that both PLD1 and RhoA are phosphorylated by PKA and the interaction between PLD1 and RhoA is inhibited by the phosphorylation of RhoA rather than by the phosphorylation of PLD1.


Subject(s)
Humans , Bucladesine/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Dibutyryl Cyclic GMP/pharmacology , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Phospholipase D/metabolism , Phosphorylation/drug effects , Pyrroles/pharmacology , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL